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Overview

The purpose of this document is to provide technical details on the analysis. These include
decisions not pre-specified in the plan and additional results and analyses not reported in themain
abstract. See the analysis plan and abstract for all other details.

Overview

Details and decisions not pre-specified in analysis plan

Ex post diagnosis of research design and departure from analysis plan

Figure 1. Percentage of applications flagged as having benefited from FSP, by date

Table 1: Results of the simulation study

Standard error estimation: bootstrapping versus parametric standard errors

Table 2. Standard error estimation for IPTWmodel

Table 3. Standard error estimation for the RDmodel

Robustness checks omitted due to switch fromDiD to RD/IPTW

Additional details onmain results

Predictivemodeling of median household income for renters

Table 4. Comparison of accuracy of predictivemodels for median renter household income

Additional results

DiD results of impact of FSP on approval from pre-analysis plan specification

Table 5. DiD Results for Impact of FSP on approval rates

Robustness check: method for predictingmedian renter income

Table 6. IPTW results for impact of FSP on approval results using SVM-based predictions

Table 7. IPTW results for impact of FSP on approval results using XGboost-based predictions

Table 8. IPTW results for impact of FSP on approval results using KNN-based predictions

Table 9. RD results for impact of FSP on approval rates using alternativeML-based predictions

Robustness check: accounting for targeted outreach

Table 10. IPTW results for impact of FSP on approval rates when accounting for marketing outreach

Robustness check: total count of applications

Table 11. IPTW results for impact of FSP on total applications at the zip code level

Robustness check: categorical specification of median income

Table 12. IPTW results for impact of FSP on approval rates using categorical specification of median
renter income

Robustness check: alternative ways of designating ZCTAs as FSP eligible

Table 13. IPTW results for impact of FSP on approval rates using alternative FSP designation

Methodology for number of approvals due to FSP

1



Estimating who benefits from FSP

Table 14. Do applicants predicted to be approved as a result of FSP look different from the full set of
applicants from FSP ZIP codes? Test of differences in proportions

2



Details and decisions not pre-specified in analysis plan

Ex post diagnosis of research design and departure from analysis plan

To constitute a valid estimator of the difference-in-differences (DiD) estimand, the estimator we

pre-registered needs to estimate the difference between two differences: first, the difference in
application approval rates for FSP and non-FSP ZIP codes before the FSP conceivably had any
effect on approval rates; second, the difference in application rates for FSP and non-FSP ZIP codes
after the FSP began to affect approval rates. Estimating this first difference correctly requires
identifying applications from FSP ZIP codes that had not yet been affected by the FSP. Our original
plan involved using the application date to identify such applications: by using applications
submitted prior to the implementation of FSP, we reasoned, we could estimate the first difference,
between applications in FSP areas and non-FSP areas prior to the impact of FSP. Since the FSPwas
implemented on 6/1/2021, we assumed applications submitted prior to this date did not benefit
from the FSP, even if they were submitted from ZIP codes that benefited from it after this date.

However, upon receiving the data we noticed that nearly 97% of applications received in the
pre-FSP period from FSP ZIP codes were coded “yes” for a flag that appeared to indicate whether
FSP had been used (inc_eli_by_fb_proxy). Our partners in Kentucky subsequently
confirmed via email that they had used FSP to clear all existing applications that had not yet been
approved, irrespective of when they had been submitted. In principle, this may have left some
applications to use to estimate the pre-FSP difference, since at least somewould have been fully
processed prior to 6/1/2021. In practice, however, the timing did not allow for this. The FSPwas
implemented 103 days after the first application was received and the average number of days to
payment in the pre-FSP period in non-FSP areas was 93 days. This meant that almost all
applications from FSP areas submitted in the “pre-FSP” period did in fact benefit from the FSP.
Figure 1 illustrates this point.
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Figure 1. Percentage of applications flagged as having benefited from FSP, by date

We suspected this discovery invalidated our pre-registered analysis and validated this through a

simulation study described below, which showed that our pre-specified approachwas biased
downwards if in fact the FSP had an impact on applications from the pre-FSP period erroneously
treated as though they had not been affected by the FSP. The pre-specified estimator was biased
downward, because we are effectively differencing out the treatment effect for the ostensibly
untreated, pre-treatment periods.

Fortunately, our evaluation did not require temporal variation to yield causally-valid insights.
There are twomain alternative approaches we consideredwhile writing the pre-analysis plan: the
regression discontinuity design (RD) and adjustment for confounders (AFC) approach.We initially
selected the difference-in-differences (DiD) estimator over the alternatives because it performed
better under the conditions of a simulation study, in which there was a large control group and a
long, valid pre-treatment period. In practice, we have an invalid pre-treatment period and a very
small control group, so we revisited the two alternatives.

In addition to the simulation study conducted prior to receiving the data, used to inform the
analysis plan, we conducted a second simulation study in which we compared the bias and
standard error of different estimation strategies in order to choose the best alternative to the
pre-registered analysis, using the actual data. The detailed description of the simulation steps is
below. At a high-level, the simulation seeks to replicate a simplified version of the actual random
assignment to FSP that occurs due to the random renter median income estimates produced by
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the ACS, uponwhich FSP determinations relied.We simulate other possible assignments of ZIP
codes to the FSP, and simulate an outcome in which the FSP increases the probability of
application approval by roughly six percentage points. Importantly, the simulation stipulates that
this causal effect kicks in from the very first application in the data, rather than at the date FSP
was implemented (which is what the first approach had assumed). The simulation then reveals the
outcomes wewould have observed under those alternative assignments by comparing the
simulated estimate of renter median income to the county-level AMI limits. The simulation
simplifies the actual study somewhat by ignoring data suppression and simulating as though renter
median income is observed in all ZIP codes.We have no reason to believe this simplification would
invalidate the comparisons between the different estimation approaches. Note that the
simulations still keep the June 1, 2021 date as themarker separating pre- from post-FSP periods,
but the simulations build in a treatment effect right from the start of the time series. In other
words, we are simulating a scenario that resembles one that we are facing in practice, where
applications submitted during the pre-FSP period are actually affected, ex-post, by the
implementation of FSP.

We compare the following five estimation approaches:

1. Difference-in-Differences (DiD): we estimate this as pre-registered, in order to

understand potential issues in this estimation approach. The difference in the pre-post
trends in approval for applications from FSP and non-FSP areas is estimated by regressing
the approval outcome on an indicator for the post-period, an indicator FSP, and their
interaction.We additionally control for confounders of the relationship between FSP and
approval, namely themedian renter income estimate and the suppression indicator. The
size of the renter population in the ZIP code is also included to account for the fact that
data suppression happens to ZIP codes with differing probabilities depending on the
sample size.

2. Adjustment for confounders (AFC): this regression is the same as the DiD, albeit with the
post-period indicator removed. In essence, the estimate of the difference in approval rates
for FSP and non-FSP areas is estimatedwhile controlling for the confounders listed above.

3. Adjustment for confounders withmonth fixed effects (AFC +month FE): this is the same
as the AFC regression, but includes a control for temporal trends.

4. Inverse propensity weighting (IPTW): this is the same regressionmodel as the AFC,
however: a) the regression is weighted by an inverse propensity weight that corresponds
to the probability we observe ZIP codes in the FSP or non-FSP condition we do in fact
observe them in; b) we drop any applications from ZIP codes whose probability of being in
either condition was zero.

5. Regression discontinuity design (RD): using the distance of themedian renter income
estimate to the county AMI threshold for FSP as the running variable, the regression
discontinuity approach extrapolates polynomial regression functions to estimate the
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difference in application approval rates for the FSP and non-FSP applications right at the
threshold of passing from non-FSP to FSP.

See below for an in-depth description of how each quantity is estimated. The Estimand column
tells us the true, underlying effect that we simulated FSP to have on the potential outcomes of the
applications. TheMean estimate tells us the average estimate of this quantity that the examined
strategy provided across all simulations. TheBias tells us the difference between theMean
estimate and the Estimand. The SE(Bias) tells us theMonte Carlo standard error of theBias
estimate (basically, whether we conducted a sufficient number of simulations to infer that any
apparent bias we see doesn’t result from random variation in the simulations themselves). The
SD(Estimate) tells us the standard deviation of the estimates across the simulations, and can be
considered as roughly equivalent to the “true” standard error that the standard error estimator is
typically trying to estimate. Because the ZIP-clustered standard error estimators included in the
packages we used took a long time to compute, and are all ultimately just trying to estimate
SD(Estimate), we don’t bother estimating standard errors on each simulation and instead focus on
the “true” standard error, SD(Estimate), which gives us a relativemeasure of how imprecise each
estimation strategy is. Finally, theRMSE is the square root of the average of the squared
difference between the estimate and the estimand. It gives us a sense of how different the
estimate is from the estimand, on average, due either to bias or the standard error.

The results of the simulations are displayed on the table below.

Table 1.Results of the simulation study

Estimator Estimand
Mean

estimate Bias SE(Bias) SD(Estimate) RMSE

DiD 0.06 0.01 -0.05 0.0006 0.03 0.06

AFC 0.06 0.14 0.08 0.0010 0.05 0.10

AFC +month

FE 0.06 0.14 0.08 0.0011 0.05 0.10

IPTW 0.06 0.09 0.03 0.0005 0.02 0.04

RD 0.06 0.05 0.00 0.0026 0.12 0.12

Wepoint out the following noteworthy results:

● DiD is downwards-biased.As expected, erroneously analyzing applications submitted in

the pre-FSP period as though they were unaffected by FSP leads us to under-estimate the
true effect.

● AFC is upwards-biased.Both adjustments for confounders approaches do not fully
account for the confounding— in fact, we estimate an impact that, on average, is twice as
large as the true underlying effect. This probably arises because, while ZIP codes are
randomly assigned to FSP via the Census’ estimation procedure, they are not assignedwith
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equal probabilities: all else equal, applications from ZIP codes that havemedian renter
income estimates that are further away from the county AMI threshold or have smaller
standard errors makes themmore likely to fall only in FSP or non-FSP conditions.

● IPTWaccounts formuch of the bias in the AFC approach. The IPTWestimator gets very
close to the true answer, exhibitingminimal bias.

● RD is the least biased estimator but is very imprecise. The RD gets bias very close to zero.
However, its standard error is more than twice as large as any other estimator.

● IPTW fares better than RD in terms of RMSE. Even though RD is less biased than IPTW,
IPTWnevertheless produces answers that are closer to the truthmore often (according to
the RMSE) because its standard error is six times smaller.

The simulationworks as follows:

1. Take the actual data used in the study

2. Create new variables:

a. Simulated treated potential outcome, Y(T = 1), which is made by duplicating the
observed approval outcome

b. Simulated control potential outcome, Y(T = 0), which is made by randomly
switching some of the 1s in Y(T = 1) to 0, such that the average treatment effect is 6
percentage points

c. A standard error, S, for every estimate of renter median income in every ZIP.Where
we have an estimate from the ACS, we turn themargin of error into a standard
error by dividing theMOE by 1.645.Where we don’t have an estimate of the renter
median income from the ACS due to suppression and instead predicted it, we
impute the associated standard error using the square root of the average of the
observed squared standard errors.

3. We then repeat the following steps 2,000 times:

a. Create a simulatedmedian renter income estimate, X, by addingmean-zero,
normally-distributed and randomly-generated error to the actual median renter
income variable used in the study, with standard deviation equal to the standard
error created above.

i. Note: This effectively treats the observedmedian renter income estimate
as the true underlyingmean that is being estimated, and the standard error
estimate as the true underlying standard deviation of the sampling
distribution.

b. Create a simulated FSP variable, Z, which is 1 for any application whose X falls

below their county AMI and 0 otherwise.
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c. Create the associated running variable.

d. Create an estimated probability of being treated by using the CDF of the normal
distribution, withmean X and standard deviation S, and use it to create an inverse
propensity weight. Flag any applications from ZIP codes whose probability of being
treatedwas 0 or 1 because their simulatedmedian renter income estimate, X, was
too low or too high relative to S such that they did not have any chance of being in
either the FSP or non-FSP conditions.

e. Reveal the simulated outcome, Y, as a function of Z: Y = Y(1) * Z + Y(0) * (Z-1)

f. Estimate and store the point estimates from the approaches listed above

4. This exercise gives rise to 2,000 simulations of five different point estimators. In each case,
the estimand they are trying to estimate, the average treatment effect, is unchanged (6
percentage points). Using the 10,000 simulated estimates and the estimand, we calculate
the following quantities:

a. Bias: This is the average of the difference between the point estimate of the
estimator and the estimand

b. SE(Bias): This is theMonte Carlo standard error of our estimate of the bias. This
can be arbitrarily reduced by increasing the number of simulations, and helps to
ensure that any bias we are estimating is not due to random variation in the
simulations alone.

c. SD(estimate): This is the standard deviation of the estimates. It gives us a sense of
how imprecise the estimation strategy is.

d. RMSE: This is the square root of the average of the squared difference between the
estimate and the estimand. It gives us a sense of how different the estimate is from
the estimand, on average, due either to bias or the standard error.

Standard error estimation: bootstrapping versus parametric standard errors

In this study, applications are affected by the FSP (the “treatment” in our quasi-experimental

analogy) at the ZIP code level. As such, all analyses account for this clustering by allowing for error
correlation at the ZIP code level in the estimation of standard errors. Our analysis plan specified
that wewould employ the “parametric” approach to standard error estimation, which we
implemented in the RD and IPTWanalyses using the closed-form solutions that are included as
part of the rdrobust and estimatr packages, respectively. However, because the clusters
exhibit very different sizes (with some ZIP codes only having one or two applications and others
many thousands), as a robustness check we also considered the “bootstrapping” approach to
estimating clustered standard errors. This approach involved repeating the following steps 200
times:
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1. Cluster-resample of FSP ZIP codes:Resample, with replacement, all 396 ZIP codes in the
analytic sample where FSPwas used.When resampling a ZIP code, retain all applications
from that ZIP code as-is.

2. Cluster-resample of non-FSP ZIP codes:Resample, with replacement, all 293 ZIP codes in
the analytic sample where FSPwas not used.When resampling a ZIP code, retain all
applications from that ZIP code as-is.

3. Within-cluster resample of applications: Loop through all ZIP code clusters resampled in
steps 1 and 2. In each ZIP code, resample with replacement all applications within that ZIP
code.

4. Re-estimate analyses, and store the results.

The standard deviation of the 200 estimates obtained from these steps provides the bootstrap
standard error.We also implement amethod that omits step 3, where there is nowithin-cluster
resampling.

When comparing the parametric and bootstrapped standard errors, the IPTW results look very
similar (see Table 2 below). Our results are robust to bootstrapping. If anything, the parametric
standard errors reported in themain analysis appear more conservative.

Table 2. Standard error estimation for IPTWmodel

Note: Because the parametric standard errors that were pre-specified in the analysis plan are

appropriately larger after clustering than the non-clustered SEs, the abstract uses the
pre-specified approach to standard error estimation.We report the results from bootstrapping to
show that themethod does not alter the statistical significance of themain results.

Standard error estimationmethod Standard error estimate onmain IPTW result
(application approval)

No clustering (robust SEs from lm_robustwithin
estimatr)

0.016

Parametric clustering (cluster robust SEs from
lm_robustwithin estimatr)

0.027

Cluster-bootstrap (with within-cluster resampling) 0.012

Cluster-bootstrap (no within-cluster resampling) 0.013

However, as Table 3 below illustrates, the parametric clustered standard errors on the RD
estimate are three times smaller than the bootstrapped clustered standard errors. Moreover,
cluster-robust SEs produced using the rdrobust package were smaller than the non-clustered
SEs estimated using the same package. In the interests of avoiding overconfidence, we thus opted
to depart from the analysis plan and use themore conservative of the two bootstrapped standard
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error approaches. The bolded row indicates the estimate used in themain abstract, the row in
italics indicates the pre-specified approach.

Table 3. Standard error estimation for the RDmodel

Note: Tominimize the risk of over-confidence, the abstract employs amore conservative approach

to standard error estimation (in bold) for the RD than the approach originally specified (in italics).

Standard error estimationmethod Standard error estimate onmain RD result
(application approval)

No clustering (robust SEs from rdrobust) 0.037

Parametric clustering (cluster robust SEs from
rdrobust)

0.011

Cluster-bootstrap (with within-cluster
resampling)

0.033

Cluster-bootstrap (no within-cluster resampling) 0.028

Robustness checks omitted due to switch fromDiD to RD/IPTW

● Because the DiD analysis was invalidated by the discovery, as described above, that there

is no pre-FSP period unaffected by the FSP, one pre-registered robustness check—
“interaction of DiDwith controls” —was omitted from this document. This robustness
check relied on the DiD specification in particular and so is omitted here.

Additional details onmain results

Predictivemodeling of median household income for renters

Our analytic sample consists of applications from ZIP Code Tabulation Areas (ZCTAs) whose

median renter income is suppressed by the Census due to small sample sizes and those whose
median renter income is observed. In order to include the suppressed ZCTAs in analyses that
condition on an estimate of median income, we usedmachine learning to predict that value.

Our process was as follows:

1. Begin with all ZCTAs nationwide (N = 23,484) for whommedian renter income is observed
— this includes both ZCTAs inside and outside Kentucky.

2. Split the data into three subsamples: a 20% held-out test set and an 80% training set that is
further split into 80% used for training and 20% used for hyperparameter tuning.

3. Predict median renter income at the ZCTA level using the following predictors:

a. State id

b. ZCTA-level:
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i. Total population

ii. White population

iii. Renter population

iv. Renter population denominator (different from total population due to not
beingmeasured for all respondents)

v. Median household income

vi. Total population for ZCTA blocks that overlap with the county

c. County-level:

i. Total population

ii. White population

iii. Renter population

iv. Renter population denominator (different from total population due to not
beingmeasured for all respondents)

v. Median household income

vi. Median household income among renters

4. For each classifier, tune the hyperparameters using the RMSE (root mean squared error)
metric.

5. Select the best-performingmodel by examining the followingmetric among the held-out
test set: percentage of predictions within 10,000 dollars of the correct median renter
household income.We chose this metric because it was important for the regression
discontinuity estimator to be correct within a relatively narrow bandwidth.

In our initial confirmatory analysis, we compared twomodels: 1. a random forest with 100 trees,
where themain hyperparameters we tuned governed howmany input features/predictors to
consider within a given tree and theminimum number of data points required to split a node; and
2. LASSO, where the penalty parameter was chosen via tuning. Random forest outperformed
LASSO for our chosenmetric (see exact numbers below) andwas used in themain confirmatory
analysis.

In a robustness check, we compared random forest to four additional types of classifiers: a neural
network-based approach, a support vector machine, a gradient boosting algorithm (xgboost), and a
k-nearest neighbors based algorithm. The table below shows that the neural network
underperformed our chosenmodel. This could be due to the fact that the input data contained a
limited number of predictors, with neural networks performing better onmore high-dimensional
data withmore predictors. The performance of the other models was similar to the random forest,
scoring similarly using either a $10,000 difference bandwidth for ourmetric or a smaller $5,000
window, with gradient boosting slightly outperforming random forest. In our robustness check
below, we use the three similarly-performingmodels — SVM; KNN; and xgboost — to construct
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ourmeasures of renter income and the running variable used in RD.We see results are nearly
identical to themain findings.

Table 4.Comparison of accuracy of predictivemodels for median renter household income

Model Percent predictions within $10,000 of
actual median renter income

Percent predictions within $5,000 of
actual median renter income

Random forest (used
in confirmatory
analysis)

87.9 73.6

Gradient-boosting 88.3 74.9

SVM 87.1 71.6

KNN 85.5 70.6

Neural network 82.8 64.2

Additional results

DiD results of impact of FSP on approval from pre-analysis plan specification

Our original analysis plan pre-specified a difference-in-differences design (pg. 11). As explained

above and in the Abstract (pg. 2), this approachwas invalidated as the necessary assumptions
were not met by program implementation. Here, we report the originally pre-specifiedmodel.

Our primary coefficient of interest is the interaction between an FSP indicator and the post-period
indicator. This result is positive and consistent in sign with our primary results, though statistically
insignificant. The results are smaller in magnitude than our primary specification. This is consistent
with the bias we expect this estimator to exhibit, given the results of the simulation study
described above.

Table 5.DiD Results for Impact of FSP on approval rates

Estimate Standard Error p-Value Lower 95%CI Upper 95%CI

Intercept 0.431 0.043 0.0000 0.346 0.516

Post -0.065 0.022 0.0048 -0.110 -0.020

FSP 0.120 0.033 0.0005 0.055 0.186

Post x FSP 0.036 0.024 0.1308 -0.011 0.083

Median renter
income 0.000 0.000 0.0608 0.000 0.000

Renter
population size 0.000 0.000 0.0313 0.000 0.000

Suppressed -0.009 0.031 0.7788 -0.070 0.053
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Robustness check: method for predictingmedian renter income

As shown above, three predictivemodels performed similarly to the random forest used to predict

suppressedmedian income estimates in themain results: a support vector machine (SVM),
k-nearest neighbors (KNN), and a boosted tree-based approach (xgboost).We here show that our
results are robust to these alternative prediction algorithms.

First, examining the IPTW results, we see that themagnitude, direction, and statistical significance
of ourmain coefficient of interest (an indicator for FSP) remains nearly identical to themain
results.

Table 6. IPTW results for impact of FSP on approval results using SVM-based predictions

Estimate Standard Error p-Value

Intercept 0.381 0.039 0.0000

FSP 0.135 0.027 0.0001

Median renter
income 0.000 0.000 0.0639

Renter
population size 0.000 0.000 0.0118

Suppressed 0.005 0.032 0.8656

Table 7. IPTW results for impact of FSP on approval results using XGboost-based predictions

Estimate Standard Error p-Value

Intercept 0.383 0.039 0.0000

FSP 0.134 0.027 0.0001

Median renter
income 0.000 0.000 0.0700

Renter
population size 0.000 0.000 0.0117

Suppressed 0.005 0.031 0.8691

Table 8. IPTW results for impact of FSP on approval results using KNN-based predictions

Estimate Standard Error p-Value

Intercept 0.383 0.039 0.0000

FSP 0.134 0.027 0.0001

Median renter
income 0.000 0.000 0.0700

Renter 0.000 0.000 0.0117
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population size

Suppressed 0.005 0.031 0.8691

For the RDwith bootstrapped SEs, we also see that themagnitude, direction, and statistical
significance of ourmain coefficient of interest remains nearly identical to themain results. For
xgboost, themodel that outperformed themodel used in themain confirmatory analyses (random
forest), the estimate was similar in magnitude (7.0 for the RD using the xgboost predictions as the
running variable; 7.5 for themain confirmatory RD using the random forest predictions as the
running variable) and the confidence intervals help us reject the null that the coefficient is equal to
zero ([1.3, 12.7]). SVM and KNN had confidence intervals that slightly crossed zero, but they
performed less well in terms of predictive accuracy than the random forest model used in the
confirmatory analysis (see Table 4).

Table 9.RD results for impact of FSP on approval rates using alternativeML-based predictions

RD estimate Standard Error Lower 95%CI Upper 95%CI

xgboost 0.070 0.029 0.013 0.127

svm 0.051 0.031 -0.010 0.112

knn 0.071 0.037 -0.001 0.144

Robustness check: Accounting for targeted outreach

Wepre-specified an analysis that would control for variousmarketing outreach efforts conducted

by KHC (pg. 20 of Analysis Plan).We implement this with amodified version of our IPTWanalysis,
which adds an extra control for ZIP codes that experiencedmarketing campaigns fromKHC. These
results are presented below.

Themagnitude, direction, and statistical significance of ourmain coefficient of interest (an
indicator for FSP) remain similar. The coefficient on themarketing indicator is small, near zero, and
not statistically significant.

Table 10. IPTW results for impact of FSP on approval rates when accounting for marketing
outreach

Estimate Standard Error p-Value Lower 95%CI Upper 95%CI

Intercept 0.387 0.039 0.0000 0.308 0.466

FSP 0.134 0.027 0.0001 0.077 0.190

Median renter
income 0.000 0.000 0.0768 0.000 0.000

Renter
population size 0.000 0.000 0.0086 0.000 0.000

Suppressed 0.009 0.031 0.7764 -0.054 0.072

Marketing -0.007 0.010 0.5110 -0.026 0.013
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We also analyzed the robustness of the RD results to this additional covariate.We see that the RD
results are substantively unchanged and statistically significant (estimate: 7.5 pp, 95%CI [0.8,
14.2]).

Robustness check: Total count of applications

Here, we implement a robustness check testing whether FSP increased the number of applications

submitted to KHC (described on pg. 21 of the Analysis Plan).We implement this by running a
modified version of our zip-level IPTWanalysis, where the outcome is the total number of
applications submitted from each ZIP code.

Our results are shown below. Ourmain coefficient of interest, an indicator for FSP, is not
statistically significant. The estimate is also substantively small. This is consistent with our
expectation that, because the FSPwas not publicized, it did not influence applicants’ decisions to
apply to the Kentucky ERA program.

Table 11. IPTW results for impact of FSP on total applications at the zip code level

Estimate Standard Error p-Value Lower 95%CI Upper 95%CI

Intercept 2.770 0.238 0.0000 2.303 3.237

FSP 0.099 0.186 0.5959 -0.267 0.464

Median renter
income 0.000 0.000 0.0988 0.000 0.000

Renter
population size 0.001 0.000 0.0000 0.001 0.001

Suppressed -0.790 0.163 0.0000 -1.111 -0.470

Robustness check: Categorical specification ofmedian income

Here, we implement a robustness check testing whether the effect of FSP on application approval

is robust to an alternative specification of median income (described on pg. 21 of the Analysis
Plan). In particular, this method does not require predicting suppressedmedian income estimates.
We instead split themedian income variable into indicators corresponding to deciles of the
observed estimates and create a separate category, “suppressed,” for ZIPs with suppressedmedian
income.We can only run this analysis for the IPTWmodel, since the categorical version of the
running variable is not compatible with the RD estimator.

Our results are shown below. Ourmain coefficient of interest, an indicator for FSP, is statistically
significant and has similar magnitude to themain results.

Table 12. IPTW results for impact of FSP on approval rates using categorical specification of
median renter income

Estimate Standard Error p-Value Lower 95%CI Upper 95%CI
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Intercept 0.294 0.040 0.000 0.210 0.378

FSP 0.122 0.025 0.000 0.070 0.174

Median renter
income decile:
10 0.155 0.036 0.001 0.077 0.232

Median renter
income decile: 2 0.048 0.042 0.278 -0.045 0.141

Median renter
income decile: 3 0.176 0.044 0.003 0.075 0.277

Median renter
income decile: 4 0.152 0.037 0.003 0.068 0.236

Median renter
income decile: 5 0.146 0.038 0.004 0.060 0.232

Median renter
income decile: 6 0.172 0.037 0.001 0.088 0.257

Median renter
income decile: 7 0.135 0.037 0.005 0.052 0.219

Median renter
income decile: 8 0.159 0.038 0.002 0.073 0.246

Median renter
income decile: 9 0.130 0.035 0.004 0.051 0.208

Median renter
income:
suppressed 0.133 0.045 0.006 0.041 0.224

Renter
population size 0.000 0.000 0.010 0.000 0.000

Robustness check: Alternative ways of designating ZCTAs as FSP eligible

Ourmain results code ZCTAs as ineligible or eligible for FSP using the same designations as those

contained in the original datasets provided by Kentucky. This coding relies on an exercise via
which ZCTAs arematched to specific counties, because eligibility thresholds for the FSP (and the
ERA program) are defined at the county level. For themost part, it is easy tomatch ZCTAs to
counties as the former are nested within the latter in many cases. There are, however, a handful of
ZCTAs that cross counties where a decisionmust bemade about which county tomatch the ZCTA
to.We here show that alternative ways of mapping ZIP codes generally do not change the FSP
status of ZCTAs, and furthermore that in the one case where they do, this does not change the
results.We compared three ways of matching ZCTAs to counties for the purpose of comparing
ZCTA-level median renter income to the county-level AMI:
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● Spatial overlap:We intersected block-level shape files with ZCTA shape files.We then
found the county that had the highest population overlap with the ZCTA according to this
spatial intersection. This approach produces 15 differences in countymatches when
compared to the dataset used in practice, and no differences in the resulting FSP status.

● Land area: Using an existing crosswalk, wematched each ZCTA to the county with the1

highest land area overlap. This approach produces 11 differences in countymatches when
compared to the dataset used in practice, and one difference in the resulting FSP status.

● Population overlap: Using the same existing crosswalk, wematched each ZCTA to the
county with the highest population overlap. This approach produces 11 differences in
countymatches when compared to the dataset used in practice, and one difference in the
resulting FSP status.

The ZIP code that has one different FSP status is the same in both the land area and population
overlapmethods, so we re-estimated themain results with that new FSP indicator. Our results,
shown on Table 13, are robust to this alternate coding.

Table 13. IPTW results for impact of FSP on approval rates using alternative FSP designation

Estimate Standard Error p-Value Lower 95%CI Upper 95%CI

Intercept 0.392 0.039 0.0000 0.315 0.470

FSP 0.127 0.027 0.0001 0.071 0.182

Median renter
income 0.000 0.000 0.0871 0.000 0.000

Renter
population size 0.000 0.000 0.0118 0.000 0.000

Suppressed 0.001 0.031 0.9635 -0.061 0.064

Methodology for number of approvals due to FSP

To generate the estimated number of approvals due to FSP, we use the IPTWmodel from themain

confirmatory analysis to predict approval status in the treatment group assuming the treatment
indicator is set to non-FSP.We use the approval probability in a binomial draw to generate a binary
approval prediction, repeating this processm= 1,000 times and use Rubin’s Rules to combine the
resulting estimates.We subtracted these predicted approvals under no FSP from the observed
approvals in the treatment group (43,480). This gives us a difference of 9,827 approvals predicted
to occur due to FSPwith a 95% confidence interval of between 9570 and 10,085 additional
approvals.We report 9500 in themain text as the rounded lower bound.

1 These crosswalks are derived from theMissouri Census Data Center’s geocorr tool
(https://mcdc.missouri.edu/applications/geocorr2018.html). Data was pulled September 2021. The crosswalk provides a
mapping between ZCTAs and counties based on a similar approach to our spatial overlap approach that uses block-level
data. But instead of performing a spatial overlap, the crosswalk draws upon an existing database the developers have
created (MABLE) of geographic correspondences.

17

https://mcdc.missouri.edu/applications/geocorr2018.html


Estimatingwho benefits from FSP

In themain abstract, we report results that FSP helped in the approval of over 9,500 applications

that would not have been approved in the absence of FSP. Importantly, we do not think 9,500more
applications were approved overall, since the programwas oversubscribed. Rather, if the number
of approvals is fixed by ERA budget totals, the 9,500 results from a shift inwhich applications got
approved. Therefore, a question arises: do the people who FSP helped to get approved look
different from the average applicant in an FSP ZIP code?What is different about those people who
would not have been approved, but for the implementation of FSP? This analysis was not
pre-registered.

To investigate this question, we take the following steps 1000 times:

1. Bootstrap resample the data, using the procedure described above.By resampling the
data before estimating themodel, we can ensure that the predictions generated in the next
step incorporate the sampling variation represented by the standard error estimates.

2. In each bootstrap resample, estimate the effect of FSP and use themodel to predict the
probability of approval for applications from FSP ZIP codes, supposing FSP never existed
(setting the FSP indicator to 0).Weestimate a regressionmodel that accounts for a
differential effect of the FSP by different demographic attributes. In the simulation used to
estimate the 9500 application number in the abstract, we use the IPTWmodel for
approval, which estimates approval probabilities as a function of FSP status and zip
code-level controls (renter median income; renter population; and suppressed status). In
this simulation,we supplement this model with interactions between the FSP indicator and
applicant-level demographic characteristics: race/ethnicity (coded as white non-Hispanic;
Black non-Hispanic, Hispanic/Latino, or other), female, disability status, veteran status,
extremely low-income, and rural (zip code level). The inclusion of these interactions
enables us tomake predictions specific to each demographic group.

3. Generate counterfactual predictions of approval in the absence of FSP. Using the
probabilities of approval predicted in the previous step, we generate counterfactual
predictions of approval in the absence of FSP for each applicant using a binomial draw
with each applicant’s predicted approval probability.We code an applicant as “approved
due to FSP” if they were actually approved but are predicted to not have been approved
when their FSP status is set to 0. This is the group of applications in our study we think
would not be approved but for the FSP.

4. Compare the demographic characteristics of the applications approved due to FSP to the
demographic characteristics of all applications from FSP ZIP codes.We then compare the
demographic characteristics of two groups: (1) the applications predicted to be approved
due to FSP in step 2 and (2) the full sample of applications from FSP ZIP codes.We
estimate the differences in the demographic proportions between these two groups, as
well as the associated standard errors.
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This procedure provides 1000 sets of demographic differences and their standard errors.We treat
each of them= 1,000 predicted approvals as its own dataset, and use Rubin’s Rules to combine the
point estimates and standard errors. Table 14 shows the results for: (1) the observed proportions
of each demographic group in the FSP-eligible population, (2) the proportions of each
demographic group in the subsample of those who are predicted to be approved due to FSP, (3) the
difference between the two proportions, and (4) 95% confidence intervals constructed using
standard errors that take into account the variability across them= 1,000 bootstrapped, random
predictions.

Table 14.Do applicants predicted to be approved as a result of FSP look different from the full set
of applicants from FSP ZIP codes? Test of differences in proportions

Difference (approved due
to FSP - all FSP eligible)

Demographic
attribute

% of all
FSP-eligible
applications

% of
applications
predicted to
be approved
due to FSP

Percentage
point

(absolute
difference)

Percent
(relative

difference)
Lower 95%

CI
Upper 95%

CI

Female 71.35 69.18 -2.17 -3.04 -3.76 -0.59

Male 28.39 30.55 2.17 7.64 0.59 3.74

Extremely low
income 68.10 66.58 -1.52 -2.23 -3.22 0.19

Rural 52.50 53.98 1.48 2.83 -3.98 6.95

Has disability 17.48 16.87 -0.61 -3.48 -1.93 0.72

Veteran 4.15 4.14 -0.02 -0.41 -0.80 0.77

White non-Hispanic 66.73 67.49 0.77 1.15 -2.69 4.22

Hispanic/Latino 2.51 3.80 1.29 51.37 0.68 1.89

Black non-Hispanic 27.05 24.72 -2.33 -8.60 -5.73 1.08

Table 14 presents the results and offers some clues as to the types of applicants whoweremost
likely to encounter barriers due to income verification. Broadly, those predicted to have received
ERA due to the income verification streamlining aremore likely to bemale and/or Hispanic/Latino2

when comparedwith the broader pool of applicants from FSP areas. It is worth noting, as we
report in the abstract, that FSP generally had a positive impact on approval rates for each of the
different groups we examined. These results do suggest however that income verification
requirements may have disparate impacts, pointing to interesting possible directions for future

2Applicants reported their gender as female, male, gender non-confirming, trans female, and transmale.We could not
estimate separate interactions for individuals identifying as gender non-conforming and trans due to insufficient sample
size.
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research. For example, user research could help uncover and understandwhy certain groups of
applicants may find income verification proceduresmore burdensome than others.
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